Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects

نویسندگان

  • M. Neveu
  • S. J. Desch
چکیده

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003 El61

Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Kepleria...

متن کامل

Generation of Highly Inclined Trans-neptunian Objects by Planet Nine

The trans-Neptunian region of the solar system exhibits an intricate dynamical structure, much of which can be explained by an instability-driven orbital history of the giant planets. However, the origins of a highly inclined, and in certain cases retrograde, population of trans-Neptunian objects remain elusive within the framework of this evolutionary picture. In this work, we show that the ex...

متن کامل

Dynamical Evolution of Protoplanetary Disks

This paper reviews the theory of protostellar debris disks. After a brief introduction to accretion disk physics, I describe coagulation models of planet formation in the outer regions of planetesimal disks. Coagulation models for the Kuiper Belt produce Pluto-sized objects on timescales of 10–40 Myr. These models yield size distributions which agree with observations of Kuiper Belt objects wit...

متن کامل

Production of the Extended Scattered Disk by Rogue Planets

We show that if the early outer solar system contained one or more additional planets of an Earth mass or larger, these planets are likely to be temporarily emplaced in the Kuiper Belt’s “scattered disk.” While on an orbit of large semimajor axis, such a “rogue planet” may efficiently raise either (1) the perihelia of other scattereddisk objects, emplacing them in the “extended scattered disk,”...

متن کامل

The outer solar system

The outer solar system extends beyond a heliocentric distance of 5AU. It contains the giant planets and their systems (rings and satellites), the Kuiper belt, the comets (except those which approach episodically the inner solar system) and, at its outer edge, the Oort cloud. The outer solar system physically corresponds to the region located outside the « snow line » which corresponded to the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014